A Study on Energy of A Graph

${ }^{1}$ Priyanka.R, ${ }^{2}$ Yashodha S

${ }^{1}$ MSc Mathematics, Department of Mathematics, Dr. SNS Rajalakshmi College of Arts And Science (Autonomous), Coimbatore, Tamil Nadu, India
${ }^{2}$ Assistant Professor, Department of Mathematics, Dr. SNS Rajalakshmi College of Arts And Science(Autonomous), Coimbatore, Tamil Nadu, India

Abstract

In this paper, different types of energy of the graph is compared. Energy f he graph is defined as the sum of the absolute values of its Eigen values of G. If $A(G)$ is the adjacency matrix of G and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the Eigen values of $\mathrm{A}(\mathrm{G})$, then $\mathrm{E}(\mathrm{G})=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. Comparison between Energy of a graph, Laplacian Energy of a graph and Maximum Eccentricity of the graph are derived. It is found that Maximum Eccentricity of a graph has the maximum energy when compared to the other two energies.

Keywords : Energy of a graph, Laplacian Energy of a graph, Maximum Eccentricity of a graph.

I. INTRODUCTION

The energy $E(G)$ of a graph, defined as the sum of the absolute values of its Eigen values that belongs to the most popular graph invariants in chemical graph theory. It originates from the π-electrons energy in Huckel molecular orbital model, but has also gained purely mathematical interest. In this paper we study about different kinds of energies of the graphs. If $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is the set of vertices of G , then the adjacency matrix $\mathrm{A}(\mathrm{G})=\left[a_{i j}\right]$ is an $\mathrm{n} \times \mathrm{n}$ matrix where $a_{i j}=1$ if v_{i} and v_{j} are adjacent and $a_{i j}=$ 0 , otherwise. Here we study about the energy of a graph, the Laplacian energy of a graph and maximum eccentricity energy of a graph. In this paper, all the graphs are assumed to be simple, connected, finite and undirected.

The energy, $\mathrm{E}(\mathrm{G})$, of a graph G is defined as the sum of the absolute values of the Eigen values of G. If A(G) is the adjacency matrix of G and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the Eigen values of $A(G)$, then $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. The set
$\left\{\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right\}$ is spectrum of G and is denoted by Spec G.

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph of order n with m edges. The Laplacian energy of a graph G is defined as

$$
\mathrm{LE}=\mathrm{LE}(\mathrm{G})=\sum_{i=1}^{n}\left|\lambda_{i}-\frac{2 m}{n}\right|,
$$

Where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n-1}, \lambda_{n}=0$ are the Laplacian Eigen values of a graph G

The maximum eccentricity energy of a graph is defined as the maximum eccentricity Eigen values of G and the Eigen values of $M_{e}(G)$. It is defined as $E M_{e}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$.

II. ENERGY OF A GRAPH

The energy, $\mathrm{E}(\mathrm{G})$, of a graph G is defined as the sum of the absolute values of the Eigen values of G. If A(G) is the adjacency matrix of G and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the eigen values of $\mathrm{A}(\mathrm{G})$, then $\mathrm{E}(\mathrm{G})=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. Now the set $\left\{\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right\}$ is the spectrum of G . All the graphs
have at most 2(n-1) energy. But this was then disproved. Graphs for which the energy s greater than 2(n-1) are called hyper energetic graphs. if $\mathrm{E}(\mathrm{G})$ $\leq 2 n-1, G$ is called non-hyper energetic graphs. In theoretical chemistry the π electron energy of a conjugated carbon molecule, computed using the Huckel theory, coincides with the energy as defined.

The energy of the graph $K_{n}-\mathrm{H}$, where H is a Hamilton cycle of G. There exist an infinite number of values of n for which k -regular graphs exist whose energies are arbitrarily small compare to the known sharp bound $\mathrm{k}+\sqrt{k(m-1)(n-k)}$ for the energy of k regular graphs on n vertices.

To illustrate this concept, we study the following examples
Example:

$$
\begin{aligned}
& A(G)=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \\
&|A-\lambda I|=\left|\begin{array}{cccc}
-\lambda & 1 & 0 & 1 \\
1 & -\lambda & 1 & 0 \\
0 & 1 & -\lambda & 1 \\
1 & 0 & 1 & -\lambda
\end{array}\right|
\end{aligned}
$$

$=\lambda^{4}-4 \lambda^{2}$
$\lambda_{1}=-0, \lambda_{2}=0, \lambda_{3}=2, \lambda_{4}=-2$
$\mathrm{E}(\mathrm{G})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\lambda_{\mathrm{i}}\right|$
$=|-2|+|2|$
$\mathrm{E}(\mathrm{G})=4$

III. LAPLACIAN ENERGY OF A GRAPH

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n-1} \lambda_{n}$ be the eigenvalues of $L(G)$. Then the Laplacian Energy, $\mathrm{LE}(\mathrm{G})$ is defined as

$$
\mathrm{LE}(\mathrm{G})=\sum_{i=1}^{n}\left|\lambda_{i}-\frac{2 m}{n}\right|
$$

Example

$$
\begin{aligned}
& D(G)=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \\
& A(G)=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \\
& \mathrm{L}(\mathrm{G})=\mathrm{D}(\mathrm{G})-\mathrm{A}(\mathrm{G}) \\
& L(G)=\left[\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] \\
& |\mathrm{A}-\lambda \mathrm{I}|=\left|\begin{array}{cccc}
2-\lambda & -1 & 0 & -1 \\
-1 & 2-\lambda & -1 & 0 \\
0 & -1 & 2-\lambda & -1 \\
-1 & 0 & -1 & 2-\lambda
\end{array}\right| \\
& =(2-\lambda)\left[-\lambda^{3}+6 \lambda^{2}-10 \lambda+4\right]-2 \lambda^{2}+8 \lambda-8 \\
& =\lambda^{4}-8 \lambda^{3}+20 \lambda^{2}-16 \lambda \\
& =\lambda\left(\lambda^{3}-8 \lambda^{2}+20 \lambda-16\right) \\
& =\lambda(\lambda-2)\left(\lambda^{2}-6 \lambda+8\right) \\
& \lambda_{1}=0, \lambda_{2}=2, \lambda_{3}=2, \lambda_{4}=4 \\
& \operatorname{LE}(\mathrm{G})=\sum_{i=1}^{n}\left|\lambda_{i}-\frac{2 m}{n}\right| \\
& \text { Here, } m=4, \mathrm{n}=4 \\
& \text { So, LE(G) }=\sum_{i=1}^{n}\left|\lambda_{i}-\frac{2(4)}{4}\right| \\
& \text { Therefore, } \\
& \text { LE(G) = } 4
\end{aligned}
$$

IV. THE MAXIMUM ECCENTRICITY ENERGY OF A GRAPH

Let G be a simple graph with n vertices $v_{1}, v_{2}, \ldots v_{n}$ and let e $\left(v_{i}\right)$ be the eccentricity at a vertex $v_{i}, \mathrm{i}=1,2, \ldots . \mathrm{n}$. The maximum eccentricity matrix of G defining as, where

$$
e_{i j}=\left\{\begin{array}{c}
\max \left\{e\left(v_{i}\right), e\left(v_{j}\right)\right\}, \text { If } v_{i}, v_{j} \in E(G) ; \\
0, \text { otherwise }
\end{array}\right.
$$

The characteristics polynomial of the maximum eccentricity matrix $M_{e}(\mathrm{G})$ is defined by

$$
\mathrm{P}(\mathrm{G}, \lambda)=\operatorname{det}\left(\lambda \mathrm{I}-M_{e}(\mathrm{G})\right)
$$

Where I is the unit matrix of order n . the maximum eccentricity Eigen values of G are the Eigen values of $M_{e}(\mathrm{G})$. Since $M_{e}(\mathrm{G})$ is real and symmetric with the zero trace, then its Eigen values are real number with sum equals to zero. We label them in non-increasing order $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. The maximum eccentricity energy of a graph G is defined as

$$
E M_{e}(\mathrm{G})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\lambda_{\mathrm{i}}\right|
$$

To illustrate this concept, we study the following examples.

Example

$$
|A-\lambda I|=\left|\begin{array}{cccc}
-\lambda & 2 & 0 & 2 \\
2 & -\lambda & 2 & 0 \\
0 & 2 & -\lambda & 2 \\
2 & 0 & 2 & -\lambda
\end{array}\right|
$$

$=\lambda^{4}-4 \lambda^{2}-4 \lambda^{2}-4 \lambda^{2}-4 \lambda^{2}$
$=\lambda^{2}\left(\lambda^{2}-16\right)$
$\lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=4, \lambda_{4}=-4$
$E(G)=8$

V. COMPARISION BETWEEN LAPLACIAN ENERGY OF A GRAPH AND ENERGY OF A GRAPH

We calculate the energy, Laplacian energy for few graphs.

GRAPH	LAPLACIAN ENERGY	ADJACENCY ENERGY
G1	0.00	0
G2	0.00	0
G3	2.00	2
G4	0.00	0
G5	2.67	2
G6	3.33	4
G7	4.00	2.82842

From the above table, it s clear that the Laplacian energy of a graph is always greater than or equal to the Energy of a graph.
That is, $L(G) \geq E(G)$

THEOREM

The Maximum Eccentricity energy of a graph is always greater than the Laplacian energy of a graph and Energy of a graph.

Proof

Part 1

Here we prove that the maximum eccentricity energy of a graph is always greater than the Laplacian energy of a graph.
We know that,

$$
\mathrm{LE}(\mathrm{G})=\sum_{i=1}^{n}\left|\lambda_{i}-\frac{2(m)}{n}\right|
$$

And,

$$
\mathrm{E} M_{e}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Comparing the above two equations and from the example we discussed above, we get

$$
\begin{array}{r}
E M_{e}(G)>\operatorname{LE}(\mathrm{G}) \\
\text { (i.e) } \sum_{i=1}^{n}\left|\lambda_{i}\right|>\sum_{i=1}^{n}\left|\lambda_{i}-\frac{2(m)}{n}\right|
\end{array}
$$

The result is trivial since m and n are positive integers.

Part 2

Here we prove that the maximum eccentricity energy of a graph is always greater than the energy of a graph.
Let G be a graph of order n and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be the maximum eccentricity Eigen values of G.
We know that $\sum_{\mathrm{i}=1}^{\mathrm{n}} \lambda_{\mathrm{i}}=0$.
Then let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}$ be the positive eigen values of G and $\lambda_{r+1}, \lambda_{r+2}, \ldots \lambda_{n}$ be the negative Eigen values of G.

Then,
$E M_{e}(G)=\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}-\left(\lambda_{r+1}, \lambda_{+2}, \cdots \lambda_{n}\right)$
$=2\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}\right)$

Since, $\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}$ are algebraic numbers, which is the Eigen values of energy of a graph. Therefore, we conclude that the maximum eccentricity of a graph is 2 times that of the energy of a graph.

Hence, the maximum eccentricity energy of graph is always greater than the energy of a graph and Laplacian energy of a graph.

VI. CONCLUSION

In this paper we conclude that the Maximum Eccentricity energy is always greater than the Laplacian energy of a graph and Energy of a graph and also that the Laplacian energy of a graph is
always greater than or equal to the Energy of a graphs.

VII. REFERENCES

[1]. R. Balakrishnan, , Department of Mathematics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India. On The energy of a graph, Linear Algebra.
[2]. Kinkar Ch. Das, Sungkyunkwan University and Seyed Ahmad Mojalal, Sungkyunkwa. On The Energy and Laplacian Energy of graphs.
[3]. Ahmed M. Naiji and N. D. Soner. On The Maximum Eccentricity Energy of a graph.
[4]. Chandrashekar adiga and M. Smitha, University of Mysore. On Maximum Degree Energy of a Graph.

